Метод хроматографии

Метод хроматографии

Выяснить строение крупных молекул посредством метода дифракции рентгеновских лучей значительно легче, если известны химическая природа субъединиц молекул и хотя бы в общем виде их расположение.

Прогресс в изучении химии белка был достигнут не сразу. Ученые минувшего столетия могли только весьма голословно утверждать, что белковая молекула состоит из аминокислот. На рубеже XX в. немецкому химику Эмилю Герману Фишеру (1852–1919) удалось показать, каким образом аминокислоты комбинируются в молекуле белка. В 1907 г. он даже получил очень простое белковоподобное соединение, состоящее из 18 единиц: 15 молекул одной аминокислоты и 3 молекулы другой.
1
Какова же структура более сложной белковой молекулы, встречающейся в природе? И в первую очередь, каково точное число каждого типа аминокислот в молекуле белка? Проще всего ответить на этот вопрос, расщепив белковую молекулу на отдельные аминокислоты и на основании химического анализа определив относительное количество каждого компонента.

Однако для современников Фишера этот путь был неприемлем. В те времена обычными химическими методами нельзя было различить аминокислоты, обладавшие сходным строением. Ответ на этот вопрос пришел с появлением нового метода, принцип которого в 1903 г. впервые разработал русский ботаник Михаил Семенович Цвет (1872–1919). Исследуя пигменты растений, Цвет получил сложную смесь, состоящую из столь сходных компонентов, что разделить ее существовавшими химическими методами было почти невозможно. Тогда ученый пропустил раствор смеси по каплям через стеклянную трубку (колонку), заполненную порошком окиси алюминия. Поверхность частиц порошка с разной силой удерживала различные вещества смеси. Когда смесь смывали свежим растворителем, вещества разделялись. Компоненты, наименее прочно связанные с поверхностью порошка, смывались в первую очередь. В конце концов смесь оказывалась разделенной на отдельные пигменты, каждый из которых характеризовался определенной полосой цвета в спектре. Этот метод разделения по цвету получил название хроматографии (от греческих слов chrёmatos — окраска, цвет и graphein — записывать). К сожалению, работы Цвета прошли незамеченными. Только через полтора десятилетия Вильштеттер, вновь применив метод Цвета, добился его признания. Хроматографию стали широко применять для разделения сложных смесей.

Однако пользоваться колонкой из порошка окиси алюминия для разделения ничтожных количеств смеси было чрезвычайно сложно. Требовался более простой и надежный метод.

Выход был найден лишь в 1944 г., когда английские биохимики Арчер Джон Портер Мартин (род. в 1910 г.) и Ричард Лоуренс Миллингтон Синдж (род. в 1914 г.) использовали для метода хроматографии простую фильтровальную бумагу. Опыты проводили так. Каплю смеси аминокислот просушивали близ нижнего края полоски фильтровальной бумаги, а затем опускали его в специальный растворитель. Последний, по закону капиллярности, поднимался по полоске вверх. Проходя через высушенную каплю, растворитель увлекал за собой отдельные аминокислоты со скоростью, характерной для каждой конкретной аминокислоты. В итоге смесь аминокислот оказывалась разделенной. Расположение аминокислот на бумаге выявлялось посредством специальных физических и химических методов. Определить количество аминокислоты в каждом пятне не составляло труда.

Новый метод хроматографии на бумаге оказался на редкость эффективным. Он прост и дешев, не требует сложной аппаратуры, позволяет тщательно разделять ничтожные количества компонентов смеси. Метод получил широкое применение во всех областях биохимии. Им, в частности, воспользовался Кэлвин в своих экспериментах со смесью фотосинтезирующих растительных клеток. По существу, исследования без применения метода хроматографии на бумаге стали немыслимы. С его помощью появилась возможность установить точное количество различных аминокислот того или иного белка. Это в свою очередь позволило определить аминокислотный состав одного белка за другим, подобно тому как устанавливают число атомов различных элементов, входящих в то или иное соединение.